\(\int \frac {\log (c (d+e x^n)^p)}{x (f+g x^{2 n})^2} \, dx\) [374]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 419 \[ \int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{2 n}\right )^2} \, dx=-\frac {d e \sqrt {g} p \arctan \left (\frac {\sqrt {g} x^n}{\sqrt {f}}\right )}{2 f^{3/2} \left (e^2 f+d^2 g\right ) n}-\frac {e^2 p \log \left (d+e x^n\right )}{2 f \left (e^2 f+d^2 g\right ) n}+\frac {\log \left (c \left (d+e x^n\right )^p\right )}{2 f n \left (f+g x^{2 n}\right )}+\frac {\log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{f^2 n}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x^n\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 f^2 n}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x^n\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f^2 n}+\frac {e^2 p \log \left (f+g x^{2 n}\right )}{4 f \left (e^2 f+d^2 g\right ) n}-\frac {p \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} \left (d+e x^n\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f^2 n}-\frac {p \operatorname {PolyLog}\left (2,\frac {\sqrt {g} \left (d+e x^n\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 f^2 n}+\frac {p \operatorname {PolyLog}\left (2,1+\frac {e x^n}{d}\right )}{f^2 n} \]

[Out]

-1/2*e^2*p*ln(d+e*x^n)/f/(d^2*g+e^2*f)/n+1/2*ln(c*(d+e*x^n)^p)/f/n/(f+g*x^(2*n))+ln(-e*x^n/d)*ln(c*(d+e*x^n)^p
)/f^2/n+1/4*e^2*p*ln(f+g*x^(2*n))/f/(d^2*g+e^2*f)/n-1/2*ln(c*(d+e*x^n)^p)*ln(e*((-f)^(1/2)-x^n*g^(1/2))/(e*(-f
)^(1/2)+d*g^(1/2)))/f^2/n-1/2*ln(c*(d+e*x^n)^p)*ln(e*((-f)^(1/2)+x^n*g^(1/2))/(e*(-f)^(1/2)-d*g^(1/2)))/f^2/n+
p*polylog(2,1+e*x^n/d)/f^2/n-1/2*p*polylog(2,-(d+e*x^n)*g^(1/2)/(e*(-f)^(1/2)-d*g^(1/2)))/f^2/n-1/2*p*polylog(
2,(d+e*x^n)*g^(1/2)/(e*(-f)^(1/2)+d*g^(1/2)))/f^2/n-1/2*d*e*p*arctan(x^n*g^(1/2)/f^(1/2))*g^(1/2)/f^(3/2)/(d^2
*g+e^2*f)/n

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 419, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.519, Rules used = {2525, 272, 46, 2463, 2441, 2352, 2460, 720, 31, 649, 211, 266, 2440, 2438} \[ \int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{2 n}\right )^2} \, dx=-\frac {d e \sqrt {g} p \arctan \left (\frac {\sqrt {g} x^n}{\sqrt {f}}\right )}{2 f^{3/2} n \left (d^2 g+e^2 f\right )}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x^n\right )}{d \sqrt {g}+e \sqrt {-f}}\right )}{2 f^2 n}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x^n\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f^2 n}+\frac {\log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{f^2 n}+\frac {\log \left (c \left (d+e x^n\right )^p\right )}{2 f n \left (f+g x^{2 n}\right )}+\frac {e^2 p \log \left (f+g x^{2 n}\right )}{4 f n \left (d^2 g+e^2 f\right )}-\frac {e^2 p \log \left (d+e x^n\right )}{2 f n \left (d^2 g+e^2 f\right )}-\frac {p \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} \left (e x^n+d\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f^2 n}-\frac {p \operatorname {PolyLog}\left (2,\frac {\sqrt {g} \left (e x^n+d\right )}{\sqrt {g} d+e \sqrt {-f}}\right )}{2 f^2 n}+\frac {p \operatorname {PolyLog}\left (2,\frac {e x^n}{d}+1\right )}{f^2 n} \]

[In]

Int[Log[c*(d + e*x^n)^p]/(x*(f + g*x^(2*n))^2),x]

[Out]

-1/2*(d*e*Sqrt[g]*p*ArcTan[(Sqrt[g]*x^n)/Sqrt[f]])/(f^(3/2)*(e^2*f + d^2*g)*n) - (e^2*p*Log[d + e*x^n])/(2*f*(
e^2*f + d^2*g)*n) + Log[c*(d + e*x^n)^p]/(2*f*n*(f + g*x^(2*n))) + (Log[-((e*x^n)/d)]*Log[c*(d + e*x^n)^p])/(f
^2*n) - (Log[c*(d + e*x^n)^p]*Log[(e*(Sqrt[-f] - Sqrt[g]*x^n))/(e*Sqrt[-f] + d*Sqrt[g])])/(2*f^2*n) - (Log[c*(
d + e*x^n)^p]*Log[(e*(Sqrt[-f] + Sqrt[g]*x^n))/(e*Sqrt[-f] - d*Sqrt[g])])/(2*f^2*n) + (e^2*p*Log[f + g*x^(2*n)
])/(4*f*(e^2*f + d^2*g)*n) - (p*PolyLog[2, -((Sqrt[g]*(d + e*x^n))/(e*Sqrt[-f] - d*Sqrt[g]))])/(2*f^2*n) - (p*
PolyLog[2, (Sqrt[g]*(d + e*x^n))/(e*Sqrt[-f] + d*Sqrt[g])])/(2*f^2*n) + (p*PolyLog[2, 1 + (e*x^n)/d])/(f^2*n)

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 649

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[(-a)*c]

Rule 720

Int[1/(((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[e^2/(c*d^2 + a*e^2), Int[1/(d + e*x), x],
 x] + Dist[1/(c*d^2 + a*e^2), Int[(c*d - c*e*x)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a
*e^2, 0]

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2440

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Dist[1/g, Subst[Int[(a +
 b*Log[1 + c*e*(x/g)])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g
 + c*(e*f - d*g), 0]

Rule 2441

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[e*((f + g
*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x)^n])/g), x] - Dist[b*e*(n/g), Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2460

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(x_)^(m_.)*((f_.) + (g_.)*(x_)^(r_.))^(q_.), x_
Symbol] :> Simp[(f + g*x^r)^(q + 1)*((a + b*Log[c*(d + e*x)^n])^p/(g*r*(q + 1))), x] - Dist[b*e*n*(p/(g*r*(q +
 1))), Int[(f + g*x^r)^(q + 1)*((a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x)), x], x] /; FreeQ[{a, b, c, d, e,
 f, g, m, n, q, r}, x] && EqQ[m, r - 1] && NeQ[q, -1] && IGtQ[p, 0]

Rule 2463

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]

Rule 2525

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Intege
rQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\log \left (c (d+e x)^p\right )}{x \left (f+g x^2\right )^2} \, dx,x,x^n\right )}{n} \\ & = \frac {\text {Subst}\left (\int \left (\frac {\log \left (c (d+e x)^p\right )}{f^2 x}-\frac {g x \log \left (c (d+e x)^p\right )}{f \left (f+g x^2\right )^2}-\frac {g x \log \left (c (d+e x)^p\right )}{f^2 \left (f+g x^2\right )}\right ) \, dx,x,x^n\right )}{n} \\ & = \frac {\text {Subst}\left (\int \frac {\log \left (c (d+e x)^p\right )}{x} \, dx,x,x^n\right )}{f^2 n}-\frac {g \text {Subst}\left (\int \frac {x \log \left (c (d+e x)^p\right )}{f+g x^2} \, dx,x,x^n\right )}{f^2 n}-\frac {g \text {Subst}\left (\int \frac {x \log \left (c (d+e x)^p\right )}{\left (f+g x^2\right )^2} \, dx,x,x^n\right )}{f n} \\ & = \frac {\log \left (c \left (d+e x^n\right )^p\right )}{2 f n \left (f+g x^{2 n}\right )}+\frac {\log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{f^2 n}-\frac {g \text {Subst}\left (\int \left (-\frac {\log \left (c (d+e x)^p\right )}{2 \sqrt {g} \left (\sqrt {-f}-\sqrt {g} x\right )}+\frac {\log \left (c (d+e x)^p\right )}{2 \sqrt {g} \left (\sqrt {-f}+\sqrt {g} x\right )}\right ) \, dx,x,x^n\right )}{f^2 n}-\frac {(e p) \text {Subst}\left (\int \frac {\log \left (-\frac {e x}{d}\right )}{d+e x} \, dx,x,x^n\right )}{f^2 n}-\frac {(e p) \text {Subst}\left (\int \frac {1}{(d+e x) \left (f+g x^2\right )} \, dx,x,x^n\right )}{2 f n} \\ & = \frac {\log \left (c \left (d+e x^n\right )^p\right )}{2 f n \left (f+g x^{2 n}\right )}+\frac {\log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{f^2 n}+\frac {p \text {Li}_2\left (1+\frac {e x^n}{d}\right )}{f^2 n}+\frac {\sqrt {g} \text {Subst}\left (\int \frac {\log \left (c (d+e x)^p\right )}{\sqrt {-f}-\sqrt {g} x} \, dx,x,x^n\right )}{2 f^2 n}-\frac {\sqrt {g} \text {Subst}\left (\int \frac {\log \left (c (d+e x)^p\right )}{\sqrt {-f}+\sqrt {g} x} \, dx,x,x^n\right )}{2 f^2 n}-\frac {(e p) \text {Subst}\left (\int \frac {d g-e g x}{f+g x^2} \, dx,x,x^n\right )}{2 f \left (e^2 f+d^2 g\right ) n}-\frac {\left (e^3 p\right ) \text {Subst}\left (\int \frac {1}{d+e x} \, dx,x,x^n\right )}{2 f \left (e^2 f+d^2 g\right ) n} \\ & = -\frac {e^2 p \log \left (d+e x^n\right )}{2 f \left (e^2 f+d^2 g\right ) n}+\frac {\log \left (c \left (d+e x^n\right )^p\right )}{2 f n \left (f+g x^{2 n}\right )}+\frac {\log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{f^2 n}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x^n\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 f^2 n}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x^n\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f^2 n}+\frac {p \text {Li}_2\left (1+\frac {e x^n}{d}\right )}{f^2 n}+\frac {(e p) \text {Subst}\left (\int \frac {\log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{d+e x} \, dx,x,x^n\right )}{2 f^2 n}+\frac {(e p) \text {Subst}\left (\int \frac {\log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{d+e x} \, dx,x,x^n\right )}{2 f^2 n}-\frac {(d e g p) \text {Subst}\left (\int \frac {1}{f+g x^2} \, dx,x,x^n\right )}{2 f \left (e^2 f+d^2 g\right ) n}+\frac {\left (e^2 g p\right ) \text {Subst}\left (\int \frac {x}{f+g x^2} \, dx,x,x^n\right )}{2 f \left (e^2 f+d^2 g\right ) n} \\ & = -\frac {d e \sqrt {g} p \tan ^{-1}\left (\frac {\sqrt {g} x^n}{\sqrt {f}}\right )}{2 f^{3/2} \left (e^2 f+d^2 g\right ) n}-\frac {e^2 p \log \left (d+e x^n\right )}{2 f \left (e^2 f+d^2 g\right ) n}+\frac {\log \left (c \left (d+e x^n\right )^p\right )}{2 f n \left (f+g x^{2 n}\right )}+\frac {\log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{f^2 n}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x^n\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 f^2 n}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x^n\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f^2 n}+\frac {e^2 p \log \left (f+g x^{2 n}\right )}{4 f \left (e^2 f+d^2 g\right ) n}+\frac {p \text {Li}_2\left (1+\frac {e x^n}{d}\right )}{f^2 n}+\frac {p \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {g} x}{e \sqrt {-f}-d \sqrt {g}}\right )}{x} \, dx,x,d+e x^n\right )}{2 f^2 n}+\frac {p \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {g} x}{e \sqrt {-f}+d \sqrt {g}}\right )}{x} \, dx,x,d+e x^n\right )}{2 f^2 n} \\ & = -\frac {d e \sqrt {g} p \tan ^{-1}\left (\frac {\sqrt {g} x^n}{\sqrt {f}}\right )}{2 f^{3/2} \left (e^2 f+d^2 g\right ) n}-\frac {e^2 p \log \left (d+e x^n\right )}{2 f \left (e^2 f+d^2 g\right ) n}+\frac {\log \left (c \left (d+e x^n\right )^p\right )}{2 f n \left (f+g x^{2 n}\right )}+\frac {\log \left (-\frac {e x^n}{d}\right ) \log \left (c \left (d+e x^n\right )^p\right )}{f^2 n}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x^n\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 f^2 n}-\frac {\log \left (c \left (d+e x^n\right )^p\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x^n\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f^2 n}+\frac {e^2 p \log \left (f+g x^{2 n}\right )}{4 f \left (e^2 f+d^2 g\right ) n}-\frac {p \text {Li}_2\left (-\frac {\sqrt {g} \left (d+e x^n\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 f^2 n}-\frac {p \text {Li}_2\left (\frac {\sqrt {g} \left (d+e x^n\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 f^2 n}+\frac {p \text {Li}_2\left (1+\frac {e x^n}{d}\right )}{f^2 n} \\ \end{align*}

Mathematica [F]

\[ \int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{2 n}\right )^2} \, dx=\int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{2 n}\right )^2} \, dx \]

[In]

Integrate[Log[c*(d + e*x^n)^p]/(x*(f + g*x^(2*n))^2),x]

[Out]

Integrate[Log[c*(d + e*x^n)^p]/(x*(f + g*x^(2*n))^2), x]

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 11.00 (sec) , antiderivative size = 635, normalized size of antiderivative = 1.52

method result size
risch \(\frac {\ln \left (\left (d +e \,x^{n}\right )^{p}\right ) \ln \left (x^{n}\right )}{n \,f^{2}}+\frac {\ln \left (\left (d +e \,x^{n}\right )^{p}\right )}{2 n f \left (f +g \,x^{2 n}\right )}-\frac {\ln \left (\left (d +e \,x^{n}\right )^{p}\right ) \ln \left (f +g \,x^{2 n}\right )}{2 n \,f^{2}}-\frac {e^{2} p \ln \left (d +e \,x^{n}\right )}{2 f \left (d^{2} g +f \,e^{2}\right ) n}+\frac {e^{2} p \ln \left (f +g \,x^{2 n}\right )}{4 f \left (d^{2} g +f \,e^{2}\right ) n}-\frac {p e g d \arctan \left (\frac {x^{n} g}{\sqrt {f g}}\right )}{2 n f \left (d^{2} g +f \,e^{2}\right ) \sqrt {f g}}-\frac {p \operatorname {dilog}\left (\frac {d +e \,x^{n}}{d}\right )}{n \,f^{2}}-\frac {p \ln \left (x^{n}\right ) \ln \left (\frac {d +e \,x^{n}}{d}\right )}{n \,f^{2}}+\frac {p \ln \left (d +e \,x^{n}\right ) \ln \left (f +g \,x^{2 n}\right )}{2 n \,f^{2}}-\frac {p \ln \left (d +e \,x^{n}\right ) \ln \left (\frac {e \sqrt {-f g}-g \left (d +e \,x^{n}\right )+d g}{e \sqrt {-f g}+d g}\right )}{2 n \,f^{2}}-\frac {p \ln \left (d +e \,x^{n}\right ) \ln \left (\frac {e \sqrt {-f g}+g \left (d +e \,x^{n}\right )-d g}{e \sqrt {-f g}-d g}\right )}{2 n \,f^{2}}-\frac {p \operatorname {dilog}\left (\frac {e \sqrt {-f g}-g \left (d +e \,x^{n}\right )+d g}{e \sqrt {-f g}+d g}\right )}{2 n \,f^{2}}-\frac {p \operatorname {dilog}\left (\frac {e \sqrt {-f g}+g \left (d +e \,x^{n}\right )-d g}{e \sqrt {-f g}-d g}\right )}{2 n \,f^{2}}+\left (\frac {i \pi \,\operatorname {csgn}\left (i \left (d +e \,x^{n}\right )^{p}\right ) {\operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right )}^{2}}{2}-\frac {i \pi \,\operatorname {csgn}\left (i \left (d +e \,x^{n}\right )^{p}\right ) \operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right ) \operatorname {csgn}\left (i c \right )}{2}-\frac {i \pi {\operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right )}^{3}}{2}+\frac {i \pi {\operatorname {csgn}\left (i c \left (d +e \,x^{n}\right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )}{2}+\ln \left (c \right )\right ) \left (\frac {\ln \left (x^{n}\right )}{n \,f^{2}}+\frac {1}{2 n f \left (f +g \,x^{2 n}\right )}-\frac {\ln \left (f +g \,x^{2 n}\right )}{2 n \,f^{2}}\right )\) \(635\)

[In]

int(ln(c*(d+e*x^n)^p)/x/(f+g*x^(2*n))^2,x,method=_RETURNVERBOSE)

[Out]

1/n*ln((d+e*x^n)^p)/f^2*ln(x^n)+1/2/n*ln((d+e*x^n)^p)/f/(f+g*(x^n)^2)-1/2/n*ln((d+e*x^n)^p)/f^2*ln(f+g*(x^n)^2
)-1/2*e^2*p*ln(d+e*x^n)/f/(d^2*g+e^2*f)/n+1/4/n*p*e^2/f/(d^2*g+e^2*f)*ln(f+g*(x^n)^2)-1/2/n*p*e/f/(d^2*g+e^2*f
)*g*d/(f*g)^(1/2)*arctan(x^n*g/(f*g)^(1/2))-1/n*p/f^2*dilog((d+e*x^n)/d)-1/n*p/f^2*ln(x^n)*ln((d+e*x^n)/d)+1/2
/n*p/f^2*ln(d+e*x^n)*ln(f+g*(x^n)^2)-1/2/n*p/f^2*ln(d+e*x^n)*ln((e*(-f*g)^(1/2)-g*(d+e*x^n)+d*g)/(e*(-f*g)^(1/
2)+d*g))-1/2/n*p/f^2*ln(d+e*x^n)*ln((e*(-f*g)^(1/2)+g*(d+e*x^n)-d*g)/(e*(-f*g)^(1/2)-d*g))-1/2/n*p/f^2*dilog((
e*(-f*g)^(1/2)-g*(d+e*x^n)+d*g)/(e*(-f*g)^(1/2)+d*g))-1/2/n*p/f^2*dilog((e*(-f*g)^(1/2)+g*(d+e*x^n)-d*g)/(e*(-
f*g)^(1/2)-d*g))+(1/2*I*Pi*csgn(I*(d+e*x^n)^p)*csgn(I*c*(d+e*x^n)^p)^2-1/2*I*Pi*csgn(I*(d+e*x^n)^p)*csgn(I*c*(
d+e*x^n)^p)*csgn(I*c)-1/2*I*Pi*csgn(I*c*(d+e*x^n)^p)^3+1/2*I*Pi*csgn(I*c*(d+e*x^n)^p)^2*csgn(I*c)+ln(c))*(1/n/
f^2*ln(x^n)+1/2/n/f/(f+g*(x^n)^2)-1/2/n/f^2*ln(f+g*(x^n)^2))

Fricas [F]

\[ \int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{2 n}\right )^2} \, dx=\int { \frac {\log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{{\left (g x^{2 \, n} + f\right )}^{2} x} \,d x } \]

[In]

integrate(log(c*(d+e*x^n)^p)/x/(f+g*x^(2*n))^2,x, algorithm="fricas")

[Out]

integral(log((e*x^n + d)^p*c)/(g^2*x*x^(4*n) + 2*f*g*x*x^(2*n) + f^2*x), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{2 n}\right )^2} \, dx=\text {Timed out} \]

[In]

integrate(ln(c*(d+e*x**n)**p)/x/(f+g*x**(2*n))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{2 n}\right )^2} \, dx=\int { \frac {\log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{{\left (g x^{2 \, n} + f\right )}^{2} x} \,d x } \]

[In]

integrate(log(c*(d+e*x^n)^p)/x/(f+g*x^(2*n))^2,x, algorithm="maxima")

[Out]

integrate(log((e*x^n + d)^p*c)/((g*x^(2*n) + f)^2*x), x)

Giac [F]

\[ \int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{2 n}\right )^2} \, dx=\int { \frac {\log \left ({\left (e x^{n} + d\right )}^{p} c\right )}{{\left (g x^{2 \, n} + f\right )}^{2} x} \,d x } \]

[In]

integrate(log(c*(d+e*x^n)^p)/x/(f+g*x^(2*n))^2,x, algorithm="giac")

[Out]

integrate(log((e*x^n + d)^p*c)/((g*x^(2*n) + f)^2*x), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\log \left (c \left (d+e x^n\right )^p\right )}{x \left (f+g x^{2 n}\right )^2} \, dx=\int \frac {\ln \left (c\,{\left (d+e\,x^n\right )}^p\right )}{x\,{\left (f+g\,x^{2\,n}\right )}^2} \,d x \]

[In]

int(log(c*(d + e*x^n)^p)/(x*(f + g*x^(2*n))^2),x)

[Out]

int(log(c*(d + e*x^n)^p)/(x*(f + g*x^(2*n))^2), x)